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NOTE

Efficient Computation of Spatial Eigenvalues
for Hydrodynamic Stability Analysis

1. INTRODUCTION

The present paper outlines a simple procedure for spatial
stability computations which substantially reduces the com-
putational cost of performing such analyses. Using several
different external and internal flow examples, the usefulness
of the procedure is clearly demonstrated.

The final form for linear stability analyses (whether
temporal or spatizl) can be represented as a generalized
eigenvalue problem,

AX = iBX, (1)

regardless of the numerical method employed to discretize
the governing ordinary differential equations. In Eq. (1) 4
and B are the discretized coefficient matrices, X is the eigen-
function vector, and 4 is the eigenvalue which represents the
compiex disturbance frequency for temporal stability and
disturbance wave number for spatial stability problems.
Global analysis, as opposed Lo local analysis, is needed for
solving such systems since it does not require any initial
guess and the entire eigenvalue spectrum can be obtained by
using methods such as QZ [1]. Although the global calcula-
tion has become routine in temporal analyses, its applica-
tion to spatial stability analyses is comparatively very
expensive. The high computational cost is due to the fact
that in spatial analysis, the eigenvalue appears nonlinearly
in the governing equations. Applying a simple transforma-
tion (cf. Bridges and Morris [27], Bramley [3], Khorrami
et al. [4]), the quadratic terms for the eigenvalue are
linearized. Such a transformation results in matrices 4 and
B which are almost twice as large as those for the temporal
case. Since the computational cost for the global solution
using the QZ algorithm is of O(m°”), where m is the order of
coefficient matrices, the spatial analysis is about five to six
times more expensive than a temporal stability analysis.
Obviously, any reduction in the order of 4 and B results in
substantial savings in computational resources (both
memory size and computational time). Such savings would
be valuable for spatial secondary stability analysis where the
order of A or B is already two to three times larger even in
temporal analyses.
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One approach to reduce the computational cost was
recently suggested by Malik [57. This approach stems from
the realization that the nonlinearity in the spatial eigenvalue
is caused by the streamwise diffusion terms (d%u/0x>
8*T/0x", etc.) which, in most shear flows, is much less
significant than the cross-stream diffusion. For inviscid
instability where viscosity acts only to stabilize the flow, the
insignificance of the streamwise diffusion terms is very
apparent. However, neglecting this term for viscous
instability needs some justification.

For wall-bounded flows, viscosity becomes singularly
important in a thin layer near the wall. However, an
asymptotic analysis indicates that only the wall-normal
diffusion terms significantly contribute to the viscous
instability. In fact, Smith es al. [6] show that the viscous
instability problem for a boundary layer at finite-Reynolds
numbers can be formulated by using interacting boundary
layer equations which ignore streamwise diffusion terms.
The basic idea here is that the neglect of streamwise diffu-
sion would not alter the fundamental structure of the
instability {viscous or inviscid) and the dominani physics
will be captured, although the disturbance growth rate may
be in error. If the streamwise diffusion terms (3%/8x?, ete.)
and thus the quadratic terms in wave number are dropped,
the order of matrices 4 and B reduces to that of the tem-
poral stability arrangement. As a result, the important
{(desired) haif of the spatial eigenvalue spectrum can be
computed with the same computational resources as the
temporal spectrum. The approximate eigenvalues can
then be corrected using local calculations which can be
performed for temporal and spatial problems with equal
efficiency. However, it must be emphasized here that such a
major reduction in the order of 4 and B is possible only
when the primitive fortn of the governing equations is
considered, This is generally the case. For those problems
which can be represented by the Orr-Sommerfeld equation,
no such gain is possible. In these situations, even though
dropping the streamwise diffusion term results in a modest
reduction in the size of the coefficient matrices, spatial
stability calculations will always be more expensive than
temporal calculations.
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In the following sections, the viability of the above proce-
dure is demonstrated for the cases of plane Poiscuille flow,
the trailing line vortex, and the Blasius boundary layer
(incompressible and compressible). The instability in the
Poiseuille flow is viscous while the trailing line vortex has
both viscous and inviscid instability modes. Similarly, a
compressible boundary layer is subjected to viscous
instability at low Mach numbers while the dominant
instability is inviscid in nature for high Mach numbers.
Thus, the examples cover a wide range of flows and
illustrate the usefulness of the approach described above.

2. ANALYSIS

The governing differential equations for hydrodynamic
stability analysis are of the form

(2*Lo+al,+ Ly)¢ =0, (2)

where L, {i =0, 1, 2) are linear differential operators, « is the
spatial eigenvalue, and ¢ the corresponding eigenfunction.
The- differential equation (2) can be discretized by using
finite-difference or spectral approach to yield

(E;+aE, +2’Ey)¢ =0, (3)

where E,, E,, and E, are Nx N matrices and N is the
number of grid points. The discrete problem (3) can be
solved, for example, by the companion matrix approach
(Ref. [2]) vielding 2N eigenvalues. However, if coelficients
of «? are small then (3) can be reduced to

(E,+ E,a)§ =0 @)
which has only N eigenvalues. Thus, half the spatial
eigenvalue spectrum is lost by the above approximation.
However, the N eigenvalues of (4) contain the important
eigenvalues for the hydronamic stability problem. In order
to see which members of the spectrum of (3) are lost by the
above approximation, we consider the scalar quadratic
equation

ex?—2bx+c=0 (5)

with b, ¢ real numbers and ¢ small. The roots of (5) are

26 ¢
b b T 200
=Eig,11—£(c‘/b2)= c
5+ 0.

Therefore, as £ — 0 one of the roots of (5} approaches a root
of the linearized version —2bx + ¢=0 and the other root
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goes off to infinity. This is also what happens in the
hydrodynamic stability problem since the eigenvalues of
small modules are important in this case. Obviously, the
above approximation will work only for certain types of
physical problems.

We note that «® term appears in the momentum and
energy equations but not in the continuity equation. Thus,
for three-dimensional compressible boundary layers (3
momentum equations, 1 energy equation, and 1 continuity
equation} the proposed approximation will yield a spectrum
of 5N cigenvalues instead of a full spectrum of 9N
eigenvalues.

3. PLANE POISEUILLE FLOW

The mean velocity profile for this flow is prescribed by

U=1-,7

V=0, ©

where U/ and V are the streamwise and normal velogities,
respectively. Superposed on this flow are two-dimensional
perturbations of the form

{u, 0, p} = {F(y), G(y), P(y)} &7, (7)

where o is the wave number and w the frequency. The

linearized governing equations, in Cartesian coordinates

(x, ¥, z), for incompressible viscous flow in a channel are
Continuity,

dG
inF+—=0; (8)
dy

X-momentum,

dz
—§+fw Re F—ix Re UF—azF—Red-—UG—m Re P=0,
dy dy - ()

y-momentum,

2
¥+inCG—iot Re UGAazG—Red—P:O,
dy dy

(10)
where u and v are the velocity perturbations and Fand G are
the corresponding eigenfunctions in the x- and y-directions,
respectively, and p is the pressure perturbation. Re is the
Reynolds number based on half width, A, and centerline
velocity of the channel. The boundary conditions are

Fx1)=G{£1)=0. (11)
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These equations are discretized using a Chebyshev spec-
tral collocation tehnique with a staggered grid. Staggering
the pressure terms along with the continuity equation
eliminates the need for any pressure boundary conditions.
The mathematical details of the spectral method can be
found in Gottlieb er al. [7] and Canuto ef al. [8] and are
omitted here. Implementation of the staggered grid is
described by Khorrami [9] and by Macaraeg et al. [10].

If the a® terms are dropped from Egs. (8)-(10), the
generalized eigenvalue problem becomes

AX=uaB8X,

where

X=[FGP]" (12)

For this problem, A and B are of O(3N), where N is the
number of collocation points. However, if the a® terms are
retained, then the transformation

F=uofF

13
G=aG 13

is needed to linearize the quadratic terms. The extra
boundary conditions are

F(+1)=G(+1)=0. (14)
In this format, the eigenvector becomes
X=[FGPFG]" (15)

The coefficient matrices now turn out to be O(5N), which is
substantially larger than those in Eq. (12). Throughout this
study, the complex IMSL QZ routine is employed to obtain
the eigenvalue spectrum, The cost of computing the eigen-
value spectrum from Eq. (12} using this algorithm is only
about 20 % of that required for Eq. (15).

TABLE 1

Spatial Eigenvalue « for Plane Poiseuilie Flow Using
@ = (.26, Re == 6000

N a N b

35 1.000472 — i0.000866 36 1.0004686 — i0.0013015

36 1.000478 — i0.000862 40 1.0004657 — i0.0013004
37 1.000473 — {0.000856 44 1.0004654 — i0.0013004
38 1.000472 — 10.000863 48 1.0004654 — 10.0013005
39 1.000472 — i0.000859 50 1.0004654 — 10.0013004
40 1.000473 — i0.000859
41 1.000471 — i0.000860
42 1.000465 — 10.000863

Note.  a. af terms included; b. 27 terms dropped.
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FIG. 1. The first 10 eigenvalues for plane Poiseuille flow: 01 with a?;
A without &? terms; @ = 0,26, Re = 6000, and N =40.

Spatial eigenvalue o was computed for =026 and
Re =6000 and the results are presented in Table I for
various numbers of Chebyshev polynomials. We note that
the instability at this frequency is viscous in nature. The
resulting eigenvalue with the & terms included is in
excellent agreement (not shown) with the eigenmode
obtained by Bridges and Morris [2]. Note the presence of
a slight round off error as N is increased beyond 40. Table 1
also shows results with the quadratic terms in « dropped.
The imaginary part indicates that such exclusion results in
a stronger instability while the real part of o is hardly
changed. In this case, roundoff error is less apparent due to
the smaller size of the 4 and B matrices. The initial guess for
a (1.000465690 — i0.001300430) from Table 1 with ¥ =40
was used in a local method, with the full equations, and
the eigenvalue in Column I was recovered. The first 10
eigenvalues of the spatial spectrum associated with both
neglecting and retaining the o? terms are potted in Fig. 1.
This figure confirms that omitting the nonlinear terms in o
does not effect the spectrum significantly.

4. TRAILING LINE VORTEX
In cylindrical-polar coordinates (r, , x), following

Lessen et al. [11], the mean velocity profile for the trailing
line vortex is given by

U=0
V=gu—eﬂﬁ (16)
W=l+e ",

where U, V, and W are the non-dimensional radial,
azimuthal, axial velocities, respectively, and g, the swirl
parameter, is proportional to the ratio of maximum swirl
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Eigenvalues o for the First Two Inviscid Unstable Modés

in Trailing Line Vortex

TABLE IIi

Eigenvalue o for the Axisymmetric Viscous Mode
in Trailing Line Vortex

N a b N a b

40 1.3082708 —i0,1831288 1.3082463 — i0.1832364 40 0.51682118 —10.00018681 0.51682118 —i0.00021430
1.3419196 — i0.1026364 13419181 —¢0.1027435 44 0.51682123 — i0.00018689 051682120 — i0.00021430

W v s Lo oowes 8 OSISI6-I000I82  0si6Riz 0000140
1.3419461 — i0.1026388 1.3419445 — i0.1027460 i i ' <A rRARe

43 1.3082709 — i0.1831288 1.3082463 —i0.1832364 Note. a. 2’ terms included; . »? terms dropped (@ =05, n =0, g = 1.0,
1.3419367 — i0.1026344 1.3419349 —0.1027416 Re = 10,000).

52 1.3082709 —i0.1831288 1.3082463 —i0.1832364

1.3419355 — 0.1026353

1.3419341 — i0.1027422

Note. a. ¢’ terms included; b. «® terms dropped (w= 10, n= -2,
g—038, Re = 10,000).

velocity to maximum axial velocity as given in Lessen et
al. [117]. Assuming three-dimensional perturbations of the
form

{1, v, w, p} = {iF(r), G(r), H(r), P(r)} e® 6=, (17)

the linearized governing equations are given by Lessen er al.
[(11] and by Khorrami et al. [4]. In Eq. (17), n is the
azimuthal wave number which can only take on integer
values.

Again we choose Chebyshev spectral collocation for
conducting the computations {Khorrami ez al. [4]). The
size of coefficient matrices is O(4N} or O(7N), depending on
whether o terms are dropped or retained.

Using both the full and reduced (linearized) set of equa-
tions, the first two inviscidly unstable modes for a repre-
sentative set of parameters w=1.0, n= -2, g4=0.8, and
Re = 10,000 are shown in Table I1. The agreement between
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FIG. 2. The first 10 inviscid modes of a trailing line vortex: O with &2,
A without o? terms; w = 1.0, n= —2, g=0.8, Re= 10,000, and N =52.

the two sets of results is excellent. Overall, the variations are
of the order 1/Re which may be neglected due to the large
growth rates of inviscid disturbances. In fact in this case
there is no need to refine the computed eigenvalues using a
locai scheme. Figure 2 is the plot of the first 10 eigenvalues
from the spectra associated with Table II. The agreement
between the two data sets confirms that the eigenvalue spec-
trum for the inviscid modes is virtually insensitive to the
exclusion of nonlinear terms. One might argue that there is
no need for solving the viscous equations for this problem
since the inviscid instability is described by Rayleigh’s equa-
tion. However, it is well known (in the case of a trailing line
vortex, see Leibovich and Stewardson {127) that there is a
severe case of a non-convergent solution and mode jumping
near the neutral points when the inviscid equations alone
are considered. Thus, the viscous terms are needed to extend
the computation beyond the upper and lower neutral
curves.

The axisymmetric (n = 0) viscous mode of instability for
the trailing-line vortex is shown in Table Iil, with and
without 22 terms. As expected, the increase in the growth
rate is of order 1/Re. For the n =0 mode, the shift in the
imaginary part of the wavenumber is not as large as in the

0.5 T T T T —T
]
0.0 | Y -
-05 | -
<
Q
—
'Y 1.0 B
&
1.5 |- -
]
-2.0 - =
sy
25 . ] L L 1 I
0.0 2.2 0.4 08 0.8 1.0
o

r

FIG. 3. The first 10 viscous modes of a trailing line vortex: [J with &2,
A without a2 terms; w = 0.5, n =0, ¢ = 1.0, Re = 10,000, and N =48,
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TABLE IV

Spatial Eigenvaltue « for the Asymmetric Viscous Mode
in Trailing Line Vortex

N a b

40 0.27981693 — i0.00033767
44 0.27981656 —i0.00033799
48 0.27981689 —i0.00033897
52 0.27981676 — i0.00033752

0.27981651 —i0.00037174
0.27981647 ~ i0.00037172
0.27981651 — i0.00037176

Note. a.a? terms included; b. o® terms dropped (w =03, 2=1, g=0.4,
Re = 2000).

case of plane Poiseuille flow. The first 10 eigenvalues of the
respective spectra are plotted in Fig. 3. Note that, except for
the unstable mode, the eigenvalues are closety packed and
difficult to distinguish. It is clear that omission of the a?
terms shifts the stable modes toward the neutral curve, but
they never cross it. Resuits for the asymmetric (n=1)
viscous mode are presented in Table IV. The trends for this
mode are identical to those explained for the axisymmetric
disturbance.

As for the CPU time, obviously it is very much dependent
on the type of computer utilized. However, independent of
the test case, the amount of CPU time spent by the QZ
routine to obtain the full eigenvalue spectrum is consistently
at least three to four times greater than the amount spent
for the reduced formulation. For example, for the case
of w=10, n= -2, g=08, Re=10,000, and N = 60,
the respective CPU times on the NASA Langley’s
CRAY Y-MP are 9.2 and 2.3 s.

5. COMPRESSIBLE BLASIUS BOUNDARY LAYER

The governing equations for the basic state of the com-
pressible Blasius boundary layer can be derived using the
Levy-Lees transformation:

A= p, i, dx (18)

dip=1p,u /20 1(p/p.) dy, (19)

where p, is the edge density, u, is the edge viscosity, u, is the
streamwise edge velocity, x is the distance along the body,
and y is normal to the body. In {—# coordinates, the
governing equations for the boundary layer with zero
pressure gradient may be written as

(Y + ' =

(a8 +a Y + /g =0,

(20)

(21)
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where

[ =ufu,, c=pulp.p.,
g=H/H,, a =c/o,

—
T ((y -2y M? ]

il

H is the enthalpy, y the ratio of specific heats, and M the
edge Mach number defined as

M=u/./yRT,. (22)
The Prandtl number ¢ is defined as
o= pc,fk, (23)

where ¢, is the specific heat at constant pressure and is
assumed to be constant. The viscosity u is assumed to be
given by the Sutherland formula,

1/2

=227x 107 — |
# TR 19seT

b —s/ft?,
where T = static temperature in degrees °R.

The thermal conductivity &k may be prescribed by a similar
formula, but for the results presented in this paper we
assume ¢ =0.7.

We make a quasi-parallel flow approximation and
impose velocity, pressure, and temperature perturbations of
the form

{a, 8, W} = {a(y), 8(y), w(y)} e+ (24)
15 ( ) oy + fz — wt) (25)
T ( ) i(:xx+,8:7mr,l, (26)

where «, f§ are the wavenumbers and w is the frequency.
It can be shown that linear disturbances satisfy the system
of ordinary differential equations

(LiD*+ L, D+ Ly)¢=0, (27)
TABLE V
Description of Test Cases
Test case ~ Mach number R T./T.e To°R é*
1 10-¢ 580 1 500 1.7208
a5 2600 1 500 1.8236
3 2.5 3000 1 600 4.2578
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FIG. 4. Variation of the spatial growth rate and phase velocity vs
frequency, with a2 terms, ———— a® terms missing; M = 107¢,

where ¢ is a five-element vector defined by

Here D = d/dy, while L, is a diagonal matrix and L, and L,
are 5 x 5 matrices whose elements are given in [5].

We solve the above system of equations, with and without
«? terms, using the methed discussed by Malik [5]. With 2?
terms included, the order of A and B in (1) is 9N while it
drops to 5N when «? terms are neglected.

Results have been obtained for three different Mach
numbers as listed in Table V. The growth rate { —2,) and
phase velocity (c,) of the least stable mode for Case 1 are
plotted in Fig. 4. It can be seen that there is very little conse-
quence of neglecting the streamwise diffusion terms. The
agreement between the two approaches (not shown) was
even better for Mach 0.5 and 2.5 flows.

In three-dimensional boundary layers, the difference
between the two approaches would depend upon the coor-
dinate system and if it is chosen such that one of the axis
aligns locally with the inviscid streamline then the difference
between the two eigenvalues will be small.

CONCLUSIONS

A simple method is presented in which the important half
of the spatial global eigenvalue spectrum can be obtained
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with the same computational effort as for the temporal
problem. The method is demonstrated for a number of test
problems including incompressible and compressible flows
as well as viscous and inviscid instability modes. Since
streamwise diffusion contributes little to the stability
problem, excellent estimates of the spatial eigenvalues may
be obtained by the proposed method.

ACKNOWLEDGMENTS

The authors thank the reviewers for their excellent comments par-
ticularly the referee who suggested the example given in Eq. (5). This work
was supporied by NASA Langley Research Center under Contract
NAS1-18240.

REFERENCES

1. G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. (The
Johns Hopkins University Press, Baltimore, MDD, 1989),

2. T. L Bridges and P. §. Morris, J. Compur. Phys. 55, 437 (1984),

3. ). S. Bramley, J. Comput. Phys. 53, 524 (1984).

4. M. R. Khorrami, M. R. Malik, and R. L. Ash, J. Comput. Phys. 81, 206
{1989).

5. M. R. Malik, J. Compur. Phys. 86, 376 {1990).

6. F.T. Smith, D. Papageorgiou, and . W. Elliott, J. Fluid Mech. 146, 313
(1984).

7. D. Gottlieb, M. Y. Hussaini, and 8. A, Orszag, “Theoty and Applica-
tion of Spectral Metheds,” in Spectraf Methods for Partial Differential
Equations, edited by R. G. Voight, D. Gottlieb, and M. Y. Hussaini
{Soc. Indus. & Appl. Math., Philadelphia, 1984), p. 1.

8 C. Canuto, M. Y. Hussaini, A, Quarteroni, and T. A, Zang, Spectral
Methods in Fluid Dynamics (Springer-Verlag, New York, 1988},

9. M. R. Khorrami, Int. J. Numer, Methods Fluids 12, 825 (1991).

10. M. G. Macaraeg, C. L. Streett, and M. Y, Hussaini, NASA TP 2858,
1988 {unpublished).

11. M. Lessen, P, J. Singh, and F. Paillet, J. Fiuid Mech. 63, 753 (1974).
12. S. Leibovich and K. Stewartson, J. Fluid Mech. 126, 335 (1983,

Received February 15, 1991; accepted February 8, 1992
MEHDI R. KHORRAMI

Mulger R, MaLik

High Technology Corporation
P.O. Box 7262
Hampton, Virginia 23666



